### Listening to "Twinkle Twinkle Little Star" Cool!!!

Posted:

**Fri Oct 06, 2006 4:43 am**Here is the script for the familiar song, "Twinkle, twinkle little star", using expression evaluator and a single math equation:

(sin(2*349*pi*t)*(step(t)-step(t-1))+ sin(2*523*pi*t)*(step(t-1)-step(t-2))+ sin(2*587*pi*t)*(step(t-2)-step(t-3))+ sin(2*523*pi*t)*(step(t-3)-step(t-4))+ sin(2*466*pi*t)*(step(t-4)-step(t-5))+ sin(2*440*pi*t)*(step(t-5)-step(t-6))+ sin(2*392*pi*t)*(step(t-6)-step(t-7))+ sin(2*349*pi*t)*(step(t-7)-step(t-8))+sin(2*523*pi*t)*(step(t-8)-step(t-9))+ sin(2*466*pi*t)*(step(t-9)-step(t-10))+ sin(2*440*pi*t)*(step(t-10)-step(t-11))+ sin(2*392*pi*t)*(step(t-11)-step(t-12))+ sin(2*523*pi*t)*(step(t-12)-step(t-13))+ sin(2*466*pi*t)*(step(t-13)-step(t-14))+ sin(2*440*pi*t)*(step(t-14)-step(t-15))+ sin(2*392*pi*t)*(step(t-15)-step(t-16))+sin(2*349*pi*t)*(step(t-16)-step(t-17))+ sin(2*523*pi*t)*(step(t-17)-step(t-18))+ sin(2*587*pi*t)*(step(t-18)-step(t-19))+ sin(2*523*pi*t)*(step(t-19)-step(t-20))+ sin(2*466*pi*t)*(step(t-20)-step(t-21))+ sin(2*440*pi*t)*(step(t-21)-step(t-22))+ sin(2*392*pi*t)*(step(t-22)-step(t-23))+ sin(2*349*pi*t)*(step(t-23)-step(t-24)))*((1-2*abs(1-2*0.5*t%0.5))*(step(t)-step(t-3)+step(t-4)-step(t-7)+step(t-8)-step(t-11)+step(t-12)-step(t-15)+step(t-16)-step(t-19)+step(t-20)-step(t-23))+(1-2*abs(1-2*1*t%1))*(step(t-3)-step(t-4)+step(t-7)-step(t-8)+step(t-11)-step(t-12)+step(t-15)-step(t-16)+step(t-19)-step(t-20)+step(t-23)-step(t-24)))

Can not listen to a equation? Read the next post!

(sin(2*349*pi*t)*(step(t)-step(t-1))+ sin(2*523*pi*t)*(step(t-1)-step(t-2))+ sin(2*587*pi*t)*(step(t-2)-step(t-3))+ sin(2*523*pi*t)*(step(t-3)-step(t-4))+ sin(2*466*pi*t)*(step(t-4)-step(t-5))+ sin(2*440*pi*t)*(step(t-5)-step(t-6))+ sin(2*392*pi*t)*(step(t-6)-step(t-7))+ sin(2*349*pi*t)*(step(t-7)-step(t-8))+sin(2*523*pi*t)*(step(t-8)-step(t-9))+ sin(2*466*pi*t)*(step(t-9)-step(t-10))+ sin(2*440*pi*t)*(step(t-10)-step(t-11))+ sin(2*392*pi*t)*(step(t-11)-step(t-12))+ sin(2*523*pi*t)*(step(t-12)-step(t-13))+ sin(2*466*pi*t)*(step(t-13)-step(t-14))+ sin(2*440*pi*t)*(step(t-14)-step(t-15))+ sin(2*392*pi*t)*(step(t-15)-step(t-16))+sin(2*349*pi*t)*(step(t-16)-step(t-17))+ sin(2*523*pi*t)*(step(t-17)-step(t-18))+ sin(2*587*pi*t)*(step(t-18)-step(t-19))+ sin(2*523*pi*t)*(step(t-19)-step(t-20))+ sin(2*466*pi*t)*(step(t-20)-step(t-21))+ sin(2*440*pi*t)*(step(t-21)-step(t-22))+ sin(2*392*pi*t)*(step(t-22)-step(t-23))+ sin(2*349*pi*t)*(step(t-23)-step(t-24)))*((1-2*abs(1-2*0.5*t%0.5))*(step(t)-step(t-3)+step(t-4)-step(t-7)+step(t-8)-step(t-11)+step(t-12)-step(t-15)+step(t-16)-step(t-19)+step(t-20)-step(t-23))+(1-2*abs(1-2*1*t%1))*(step(t-3)-step(t-4)+step(t-7)-step(t-8)+step(t-11)-step(t-12)+step(t-15)-step(t-16)+step(t-19)-step(t-20)+step(t-23)-step(t-24)))

Can not listen to a equation? Read the next post!

**P.S.**The above equation includes the treble clef only, it is not difficult to extend the equation to include bass clef.